Кольцо целых чисел. Проблема представления данных

Определение:

Суммой и произведением целых р-адических чисел определяемых последовательностями и, называются целые р-адические числа, определяемые соответственно последовательностями и.

Чтобы быть уверенным в корректности этого определения,мы должны доказать,что последовательности и определяют некоторые целые - адические числа и что эти числа зависят только от, а не от выбора определяющих их последовательностей. Оба эти свойства доказываются путем очевидной проверки.

Очевидно,что при данном нам определении действий над целыми - адическими числами они образуют коммуникативное кольцо, содержащее кольцо целых рациональных чисел в качестве подкольца.

Делимость целых - адических чисел определяется так же,как и в любом другом кольце: , если существует такое целое - адическое число, что

Для исследования свойств деления важно знать, каковы те целые - адические числа,для которых существуют обратные целые - адические числа. Такие числа называют делителями единицы или единицами. Мы их будем называть - адическими единицами.

Теорема 1 :

Целое - адическое число,определяемое последовательностью, тогда и только тогда является единицей, когда.

Доказательство :

Пусть является единицей, тогда существует такое целое - адическое число, что. Если определяется последовательностью то условие означает,что. В частности, а значит, Обратно, пусть Из условия легко следует, что, так что. Следовательно, для любого n можно найти такое, что будет справедливо сравнение. Так как и, то. Это значит, что последовательность определяет некоторое целое - адическое число Сравнения показывают, что, т.е. что является единицей.

Из доказанной теоремы следует, что целое рациональное число. Будучи рассмотрено как элемент кольца, тогда и только тогда является единицей, когда. Если это условие выполнено,то содержится в. Отсюда следует, что любое целое рациональное b делитсяна такое a в,т.е. что любое рациональное число вида b/a, где a и b целые и, содержится в Рациональные числа такого вида называются -целыми. Они образуют очевидным образом кольцо. Полученный нами результат можно теперь сформулировать так:

Следствие:

Кольцо целых - адических чисел содержит подкольцо, изоморфное кольцу - целых рациональных чисел.

Дробные p-адические числа

Определение :

Дробь вида, k >= 0 определяет дробное p -адическое число или просто p -адическое число. Две дроби, и, определяют одно и тоже p -адическое число, если в.

Совокупность всех p -адических чисел обозначается p . Легко проверить, что операции сложения и умножения продолжаются с p на p и превращают p в поле.

2.9. Теорема. Всякое p -адическое число единственным образом представляется в виде

где m -- целое число, а -- единица кольца p .

2.10. Теорема. Всякое отличное от нуля p -адическое число однозначно представляется в виде

Свойства: Поле p-адических чисел содержит в себе поле рациональных чисел. Нетрудно доказать, что любое целое p-адическое число некратное p обратимо в кольце p , а кратное p однозначно записывается в виде, где x не кратно p и поэтому обратимо, а. Поэтому любой ненулевой элемент поля p может быть записан в виде, где x не кратно p, а m любое; если m отрицательно, то, исходя из представления целых p-адических чисел в виде последовательности цифр в p-ичной системе счисления, мы можем записать такое p-адическое число в виде последовательности, то есть, формально представить в виде p-ичной дроби с конечным числом цифр после запятой и, возможно, бесконечным числом ненулевых цифр до запятой. Деление таких чисел можно также производить аналогично «школьному» правилу, но начиная с младших, а не старших разрядов числа.

В различных разделах математики, а также в применении математики в технике, часто встречается ситуация, когда алгебраические операции производятся не над числами, а над объектами иной природы. Например сложение матриц, умножение матриц, сложение векторов, операции над многочленами, операции над линейными преобразованиями и т.д.

Определение 1. Кольцом называется множество математических объектов, в котором определены два действия − "сложение" и "умножение", которые сопоставляют упорядоченным парам элементов их "сумму" и "произведение", являющиеся элементами того же множества. Данные действия удовлетворяют следующим требованиям:

1. a+b=b+a (коммутативность сложения).

2. (a+b)+c=a+(b+c) (ассоциативность сложения).

3. Существует нулевой элемент 0 такой, что a +0=a , при любом a .

4. Для любого a существует противоположный элемент −a такой, что a +(−a )=0.

5. (a+b)c=ac+bc (левая дистрибутивность).

5". c(a+b)=ca+cb (правая дистрибутивность).

Требования 2, 3, 4 означают, что множество математических объектов образует группу , а вместе с пунктом 1 мы имеем дело с коммутативной (абелевой) группой относительно сложения.

Как видно из определения, в общем определении кольца на умножения не накладывается никаких ограничений, кроме дистрибутивности со сложением. Однако при различных ситуациях возникает необходимость рассматривать кольца с дополнительными требованиями.

6. (ab)c=a(bc) (ассоциативность умножения).

7. ab=ba (коммутативность умножения).

8. Существование единичного элемента 1, т.е. такого a ·1=1·a=a , для любого элемента a .

9. Для любого элемента элемента a существует обратный элемент a −1 такой, что aa −1 =a −1 a= 1.

В различных кольцах 6, 7, 8, 9 могут выполняться как отдельно так и в различных комбинациях.

Кольцо называется ассоциативным, если выполняется условие 6, коммутативным, если выполнено условие 7, коммутативным и ассоциативным если выполнены условия 6 и 7. Кольцо называется кольцом с единицей, если выполнено условие 8.

Примеры колец:

1. Множество квадратных матриц.

Действительно. Выполнение пунктов 1-5, 5" очевидна. Нулевым элементом является нулевая матрица. Кроме этого выполняется пункт 6 (ассоциативность умножения), пункт 8 (единичным элементом является единичная матрица). Пункты 7 и 9 не выполняются т.к. в общем случае умножение квадратных матриц некоммутативна, а также не всегда существует обратное к квадратной матрице.

2. Множество всех комплексных чисел.

3. Множество всех действительных чисел.

4. Множество всех рациональных чисел.

5. Множество всех целых чисел.

Определение 2. Всякая система чисел, содержащая сумму, разность и произведение любых двух своих чисел, называется числовым кольцом .

Примеры 2-5 являются числовыми кольцами. Числовыми кольцами являются также все четные числа, а также все целые числа делящихся без остатка на некоторое натуральное число n. Отметим, что множество нечетных чисел не является кольцом т.к. сумма двух нечетных чисел является четным числом.

Примеры

a + b i {\displaystyle a+bi} где a {\displaystyle a} и b {\displaystyle b} рациональные числа, i {\displaystyle i} - мнимая единица . Такие выражения можно складывать и перемножать по обычным правилам действий с комплексными числами , и у каждого ненулевого элемента существует обратный, как это видно из равенства (a + b i) (a a 2 + b 2 − b a 2 + b 2 i) = (a + b i) (a − b i) a 2 + b 2 = 1. {\displaystyle (a+bi)\left({\frac {a}{a^{2}+b^{2}}}-{\frac {b}{a^{2}+b^{2}}}i\right)={\frac {(a+bi)(a-bi)}{a^{2}+b^{2}}}=1.} Из этого следует, что рациональные гауссовы числа образуют поле, являющееся двумерным пространством над (то есть квадратичным полем).
  • Более общо, для любого свободного от квадратов целого числа d {\displaystyle d} Q (d) {\displaystyle \mathbb {Q} ({\sqrt {d}})} будет квадратичным расширением поля Q {\displaystyle \mathbb {Q} } .
  • Круговое поле Q (ζ n) {\displaystyle \mathbb {Q} (\zeta _{n})} получается добавлением в Q {\displaystyle \mathbb {Q} } примитивного корня n -й степени из единицы. Поле должно содержать и все его степени (то есть все корни n -й степени из единицы), его размерность над Q {\displaystyle \mathbb {Q} } равняется функции Эйлера φ (n) {\displaystyle \varphi (n)} .
  • Действительные и комплексные числа имеют бесконечную степень над рациональными, поэтому они не являются числовыми полями. Это следует из несчетности: любое числовое поле является счётным .
  • Поле всех алгебраических чисел A {\displaystyle \mathbb {A} } не является числовым. Хотя расширение A ⊃ Q {\displaystyle \mathbb {A} \supset \mathbb {Q} } алгебраично, оно не является конечным.

Кольцо целых числового поля

Поскольку числовое поле является алгебраическим расширением поля Q {\displaystyle \mathbb {Q} } , любой его элемент является корнем некоторого многочлена с рациональными коэффициентами (то есть является алгебраическим). Более того, каждый элемент является корнем многочлена с целыми коэффициентами, так как можно домножить все рациональные коэффициенты на произведение знаменателей. Если же данный элемент является корнем некоторого унитарного многочлена с целыми коэффициентами, он называется целым элементом (или алгебраическим целым числом). Не все элементы числового поля целые: например, легко показать что единственные целые элементы Q {\displaystyle \mathbb {Q} } - это обычные целые числа .

Можно доказать, что сумма и произведение двух алгебраических целых чисел - снова алгебраическое целое число, поэтому целые элементы образуют подкольцо числового поля K {\displaystyle K} , называемое кольцом целых поля K {\displaystyle K} и обозначаемое . Поле не содержит делителей нуля и это свойство наследуется при переходе к подкольцу, поэтому кольцо целых целостно ; поле частных кольца O K {\displaystyle {\mathcal {O}}_{K}} - это само поле K {\displaystyle K} . Кольцо целых любого числового поля обладает следующими тремя свойствами: оно целозамкнуто , нётерово и одномерно . Коммутативное кольцо с такими свойствами называется дедекиндовым в честь Рихарда Дедекинда .

Разложение на простые и группа классов

В произвольном дедекиндовом кольце существует и единственно разложение ненулевых идеалов в произведение простых . Однако не любое кольцо целых удовлетворяет свойству факториальности : уже для кольца целых квадратичного поля O Q (− 5) = Z [ − 5 ] {\displaystyle {\mathcal {O}}_{\mathbb {Q} ({\sqrt {-5}})}=\mathbb {Z} [{\sqrt {-5}}]} разложение не единственно:

6 = 2 ⋅ 3 = (1 + − 5) (1 − − 5) {\displaystyle 6=2\cdot 3=(1+{\sqrt {-5}})(1-{\sqrt {-5}})}

Введя на этом кольце норму, можно показать, что эти разложения действительно различны, то есть одно нельзя получить из другого умножением на обратимый элемент .

Степень нарушения свойства факториальности измеряют при помощи группы классов идеалов , эта группа для кольца целых всегда конечна и её порядок называют числом классов.

Базисы числового поля

Целый базис

Целый базис числового поля F степени n - это множество

B = {b 1 , …, b n }

из n элементов кольца целых поля F , такое что любой элемент кольца целых O F поля F можно единственным способом записать как Z -линейную комбинацию элементов B ; то есть для любого x из O F существует и единственно разложение

x = m 1 b 1 + … + m n b n ,

где m i - обычные целые числа. В этом случае любой элемент F можно записать как

m 1 b 1 + … + m n b n ,

где m i - рациональные числа. После это целые элементы F выделяются тем свойством, что это в точности те элементы, для которых все m i целые.

Используя такие иструменты как локализация и эндоморфизм Фробениуса , можно построить такой базис для любого числового поля. Его построение является встроенной функцией во многих системах компьютерной алгебры .

Степенной базис

Пусть F - числовое поле степени n . Среди всех возможных базисов F (как Q -векторного пространства), существуют степенные базисы, то есть базисы вида

B x = {1, x , x 2 , …, x n −1 }

для некоторого x F . Согласно теореме о примитивном элементе , такой x всегда существует, его называют примитивным элементом данного расширения.

Норма и след

Алгебраическое числовое поле является конечномерным векторным пространством над Q {\displaystyle \mathbb {Q} } (обозначим его размерность за n {\displaystyle n} ), и умножение на произвольный элемент поля является линейным преобразованием этого пространства. Пусть e 1 , e 2 , … e n {\displaystyle e_{1},e_{2},\ldots e_{n}} - какой-нибудь базис F , тогда преобразованию x ↦ α x {\displaystyle x\mapsto \alpha x} соответствует матрица A = (a i j) {\displaystyle A=(a_{ij})} , определяемая условием

α e i = ∑ j = 1 n a i j e j , a i j ∈ Q . {\displaystyle \alpha e_{i}=\sum _{j=1}^{n}a_{ij}e_{j},\quad a_{ij}\in \mathbf {Q} .}

Элементы этой матрицы зависят от выбора базиса, однако от него не зависят все инварианты матрицы, такие как определитель и след . В контексте алгебраических расширений, определитель матрицы умножения на элемент называется нормой этого элемента (обозначается N (x) {\displaystyle N(x)} ); след матрицы - следом элемента (обозначается Tr (x) {\displaystyle {\text{Tr}}(x)} ).

След элемента является линейным функционалом на F :

Tr (x + y) = Tr (x) + Tr (y) {\displaystyle {\text{Tr}}(x+y)={\text{Tr}}(x)+{\text{Tr}}(y)} и Tr (λ x) = λ Tr (x) , λ ∈ Q {\displaystyle {\text{Tr}}(\lambda x)=\lambda {\text{Tr}}(x),\lambda \in \mathbb {Q} } .

Норма является мультипликативной и однородной функцией:

N (x y) = N (x) ⋅ N (y) {\displaystyle N(xy)=N(x)\cdot N(y)} и N (λ x) = λ n N (x) , λ ∈ Q {\displaystyle N(\lambda x)=\lambda ^{n}N(x),\lambda \in \mathbb {Q} } .

В качестве исходного базиса можно выбрать целый базис , умножению на целое алгебраическое число (то есть на элемент кольца целых ) в этом базисе будет соответствовать матрица с целыми элементами. Следовательно, след и норма любого элемента кольца целых являются целыми числами.

Пример использования нормы

Пусть d {\displaystyle d} - - целый элемент, так как он является корнем приведенного многочлена x 2 − d {\displaystyle x^{2}-d} ). В этом базисе умножению на a + b d {\displaystyle a+b{\sqrt {d}}} соответствует матрица

(a d b b a) {\displaystyle {\begin{pmatrix}a&db\\b&a\end{pmatrix}}}

Следовательно, N (a + b d) = a 2 − d b 2 {\displaystyle N(a+b{\sqrt {d}})=a^{2}-db^{2}} . На элементах кольца эта норма принимает целые значения. Норма является гомоморфизмом мультипликативной группы Z [ d ] {\displaystyle \mathbb {Z} [{\sqrt {d}}]} на мультипликативную группу Z {\displaystyle \mathbb {Z} } , поэтому норма обратимых элементов кольца может быть равна только 1 {\displaystyle 1} или − 1 {\displaystyle -1} . Для того, чтобы решить уравнение Пелля a 2 − d b 2 = 1 {\displaystyle a^{2}-db^{2}=1} , достаточно найти все обратимые элементы кольца целых (также называемые единицами кольца ) и выделить среди них имеющие норму 1 {\displaystyle 1} . Согласно теореме Дирихле о единицах , все обратимые элементы данного кольца являются степенями одного элемента (с точностью до умножения на − 1 {\displaystyle -1} ), поэтому для нахождения всех решений уравнения Пелля достаточно найти одно фундаментальное решение.

См. также

Литература

  • Х. Кох. Алгебраическая теория чисел . - М. : ВИНИТИ , 1990. - Т. 62. - 301 с. - (Итоги науки и техники. Серия «Современные проблемы математики. Фундаментальные направления».).
  • Чеботарев Н.Г. Основы теории Галуа. Часть 2. - М. : Едиториал УРСС, 2004.
  • Вейль Г. Алгебраическая теория чисел. Пер. с англ.. - М. : Едиториал УРСС, 2011.
  • Serge Lang , Algebraic Number Theory, second edition, Springer, 2000

Опр. Кольцо K называется кольцом целых чисел, если аддитивная группа кольца K является аддитивной группой целых чисел и умножение в кольце K коммутативно и продолжает умножение натуральных чисел (в системе N натуральных чисел).

Т1. Пусть - аддитивная группа целых чисел, есть естественное умножение в ней и 1 – единица системы N натуральных чисел. Тогда алгебра Z=является кольцом целых чисел.

Док-во. Покажем, что алгебра Z есть коммутативное кольцо. По условию, алгебра - аддитивная группа кольца – есть абелева группа, как аддитивная группа целых чисел.

Пусть a, b, c – произвольные элементы множества Z. Их можно представить в виде радости натуральных чисел. Пусть (1) a=m-n, b=p-q, c=r-s (m, n, p, q, r, s N).

Естественное умножение в Z определяется формулой (2) a*b=(m-n)*(p-q)=(mp+nq)-(mq+np).

Естественное умножение коммутативно, так как b*a= (p-q)*(m-n)=(pm+qn)-(pn+qm), и коммутативно сложение и умножение натуральных чисел.

Естественное умножение ассоциативно. В самом деле, в силу (1) и (2) имеем:

a*(b*c)=(m-n)[(p-q)(r-s)]=(m-n)[(pr+qs)-(ps-qr)]=(mpr+mqs+nps+nqr)-(mps+mqr+npr+nqs);

(a*b)*c=[(m-n)(p-q)](r-s)=[(mp+nq)-(mq+np)](r-s)=(mpr+nqr+mqs+nps)-(mps+nqs+mqr+npr).

Следовательно, в силу коммутативности сложения натуральных чисел a*(b*c)= (a*b)*c.

Элемент 1 является нейтральным относительно естественного умножения. В самом деле, для любого a из 2 имеем a*1=(m-n)(1-0)=m*1-n*1=m-n=a.

Следовательно, алгебра является коммутативным моноидом.

Опр. Если для целых чисел aи bсуществует такое натуральное число k, что a+k=bи k 0,то говорят, что «a меньше или b», и пишут ab тогда и только тогда, когда b

Т2. Пусть Z=кольцо целых чисел. Тогда: 1) для любых целых чисел a и b выполняется одно и только одно из трех услоий: a

2) для любого целого числа a выполняется одно и только одно из трех условий: a<0, a=0, 0

3) отношение < монотонно относительно сложения, т.е. для любых целых a, bи c

a

4) отношение <монотонно относительно умножения, т.е. для любых целых a, bи с

если a0, то ac

Т. о делении с остатком. Пусть a – целое число и b – натуральное число, отличное от нуля. Разделить число a и b с остатком – значит представить его в виде a=bq+r, где 0 r

Деление с остатком всегда выполнимо, а неполное частное и остаток однозначно определяются делимым и делителем.

Т. Для любых целых чисел a, bпри b>0существует единственная пара целых чисел qи r, удовлетворяющая условиям: (1) a=bq+rи 0 r

Док-во. Докажем, что существует хотя бы одна пара чисел q, r удовлетворяющая условиям (1). Вначале рассмотрим случай, когда a – натуральное число. Фиксируем b и индукцией по a докажем, что (2) существует пара целых чисел q, r, удовлетворяющая (1).

Для a=0 утверждение (2) верно, так как 0=b*0+0. Предположим, что (2) верно для a=n, т.е. существуют целые q, rтакие, что (3) n=bq+rи 0 r

Наибольший общий делитель. Целое число c называется общим делителем целых чисел a 1 , …, a n , если cесть делитель каждого из этих чисел.

Опр. Наибольшим общим делителем целых чисел a 1 , …, a n называется такой их общий делитель, который делится на любой общий делитель этих чисел.

Целые числа a 1 , …, a n называется взаимно простыми, если их наибольший общий делитель чисел равен единице.

НОД чисел a 1 , …, a n обозначается НОД(a 1 , …, a n), положительный НОД этих чисел обозначается нод(a 1 , …, a n).

След-ие 1. Если d есть НОД целых чисел a 1 , …, a n , то множество всех общих делителей этих чисел совпадает с множеством всех делителей числа d.

След-ие 2. Любые два НОД целых чисел a 1 , …, a n ассоциированы, т.е. могут отличаться только знаком. Если d есть НОД чисел a 1 , …, a n , то число (-d) также есть НОД этих чисел.

Алгоритм Евклида. Способ нахождения НОД двух целых чисел.

Предложение. Пусть aи b–два целых числа, b≠0 и (1) a=bq+r (0 r<|b|).

Тогда нод(a,b)=нод(b,r).

Док-во. Из (1) следует, что любой общий делитель чисел aи bесть делитель числа r=a-bqи любой общий делитель чисел bи rесть делитель числа a. Поэтому множество всех общих делителей чисел aи bсовпадает с множеством всех общих делителей чисел bи r. Отсюда следует, что положительный общий делитель чисел aи bсовпадает с положительным общим делителем чисел bи r, т.е. нод(a,b)=нод(b,r).



Если b|a, где b≥1, то очевидно, нод(a,b)=b. Для нахождения нод двух целых чисел применяют способ «последовательного деления», называемый алгоритмом Евклида. Сущность этого способа состоит в том, что в силу доказанного выше предложения задача нахождения нод чисел a и bсводится к более простой задаче нахождения нод чисел bи r, где 0≤r<|b|. Если r=0, то нод(a,b)=b. Если же r≠0, то рассуждения повторяем, отправляясь от bи r. В результате получим цепочку равенств.

Если a=0, то b=0*c=0 и теорема верна. Если же a≠0, то из (1) следует cd=1. По теореме, из равенства cd=1 следует, что d= 1. Кроме того, a=bd; следовательно, a= b. Доказано.

Наименьшее общее кратное. Целое число cназывается общим кратным целых чисел a 1 , …, a n , если оно делится на каждое из этих чисел.

Опр. Наименьшим общим кратным целых чисел a 1 , …, a n называется такое их общее кратное, которое делит любое общее кратное этих чисел. Об-ие: НОК(a 1 , …, a n). Положительное наименьшее общее кратное чисел a 1 , …, a n , отличных от нуля, об-ся через .

Сл-ие. Любые два наименьших общих кратных целых чисел a 1 , …, a n ассоциированы в Z, т.е. могут отличаться только знаком. Если число mесть НОК(a 1 , …, a n), то и число (-m) есть НОК(a 1 , …, a n).

Сл-ие. Если m – наименьшее общее кратное чисел a 1 , …, a n , то множество всех общих кратных этих чисел совпадает с множеством всех кратных числа m.

Поделиться: